Roll No.

Total No. of Questions: 9]

[Total No. of Printed Pages: 4

(2034)

UG (CBCS) IIIrd Year Annual Examination 2999

B.Sc. PHYSICS

(Nuclear and Particle Physics)
(DSE-1B)

Paper: PHYS 304 TH

Time: 3 Hours]

[Maximum Marks: 70

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory.

Section-A

(Compulsory Question)

- 1. (i) What is the significance of Nuclear Quadrupole Moment?
 - (ii) What is Parity? Explain.
 - (iii) What are the limitations of shell-model?
 - (iv) What is the principle of carbon radioactive dating?

CH-299

(1)

Turn Over

- (v) Explain Q-value of a nuclear reaction and its significance.
- (vi) What is nuclear reaction's cross-section?
- (vii) Why visible light cannot be used to demonstrate Compton effect?
- (viii) Why electron-positron pair production process cannot occur in a vacuum?
- (ix) What are the distinct advantages of Scintillation counter?
- (x) What is Betatron and how does it differ from cyclotron?
- (xi) What is Strangeness(S)? Why are strange particles so called? 11×2=22

Section-B

- 2. (a) What are nuclear forces? Explain their main properties.
 - (b) The mass of $_{17}\text{Cl}^{35}$ is 34.9800 a.m.u. Calculate its binding energy. What is the binding energy per nucleon? Given mass of proton = 1.007825 a.m.u., mass of neutron = 1.008665 a.m.u. 6×2=12

3.	Discuss the basic assumptions of the liquid drop	
	model of the nucleus. Explain how the model is used	
	to estimate the semi-empirical mass formula.	2
	Section-C	90
4.	What led Pauli to put forward the neutrino	
	hypothesis? Give elementary theory of β-decay.	12
5.	Write notes on the following:	
	(a) Compound nucleus	
	(b) Nuclear cross-section 6×2=	12
	Section-D	
6.	Derive Bethe-Bloch's formula for the energy loss of	
	a particle passing through matter.	12
7.	Describe principle, construction and working of G.M.	
	counter. What do you mean by dead time of G.M.	. S.h
	counter.	12
	Section-E	
8	. What is synchrotron? Give the constructional details	
	and working of proton synchrotron.	12

- 9. Write short notes on the following:
 - (a) Hyper charge
 - (b) Baryon number
 - (c) Lepton number
 - (d) Isospin
 - (e) Decay process of mesons
 - (f) Isotopic spin

6×2=12

The transfer of the telephone of the control of the

L Krijinastri e molektori e 4

GO NEW KY KUTOWAL SWEET

The Roll Physical Report Lawy Control

CH-299

(4)

A COLOR DE LA COLO

A substantial section of