Roll No.

 $T_{\text{otal No. of Questions}}$ (2034)

[Total No. of Printed Pages: 4

UG (CBCS) IInd Year Annual Examination 2804

B.Sc. PHYSICS

(Statistical and Thermal Physics)

(DSC-1C)/Core

Paper: PHYS 201 TH

Time: 3 Hours]

[Maximum Marks: 50

Note: Attempt five questions in all, selecting one question each from Sections-B, C, D and E and seven subquestions from Section-A. Question No. 1 is compulsory.

Section-A

(Compulsory Question)

1. Attempt all the seven sub-questions:

CH-104

(1)

Turn Over

- (i) Probability of drawing two Kings in Succession from the Pack of cards is:
 - (a) $\frac{1}{52}$

(b) $\frac{1}{144}$

(c) $\frac{2}{52}$

- (d) $\frac{1}{221}$
- (ii) Phase space is:
 - (a) Three Dimensional (b) Six Dimensional
 - (c) Four Dimensional (d) None of these
- (iii) Pauli's exclusion principle applies to :
 - (a) B-E statistics
- (b) M-B statistics
- (c) F-D statistics
- (d) None of these
- (iv) The S.I unit of entropy is
- (v) Write expression for temperature of inversion.
- (vi) Which of the following is called total heat function?

(2)

- (a) Gibbs' function
- (b) Enthalpy
- (c) Entropy

- (d) None of these
- (vii) Helmholtz free energy is defined by:
 - (a) F = U TS
 - (b) F = U + PV
 - (c) F = U + TS
 - (d) F = U + TV TS

CH-104

 $2 \times 7 = 14$

Section-B

- 2. (a) Discuss the distribution of n-distinguishable particles in k-compartments which are further sub-divided into g-cells of equal a prioriprobability.
 - (b) What do you understand by most Probable macrostate?
- 3. Derive the expression $P_x = P_{\text{max}} \bar{e} \frac{f^2 n}{2}$ for a macrostate having a deviation x from the most probable macrostate for a distribution of n particles in two identical compartments.

Section-C

- (a) Define Phase space. Determine the phase space cells in the momentum interval P and P + dPaccording to Maxwell Boltzmann statistics.
 - Assuming MB distribution of molecular speed derive expression for root mean square speed. 5.4
- Derive Planck's law for energy distribution of black body using Bose-Einstein distribution law. 9

Section-D

6. (a) What is T-S diagram? Using it derive expression for the efficiency of the Carnot's heat engine.

7,2

9

- (b) Define isothermal process. Derive an expression for work done during isothermal process.
- 5,4

- 7. (a) Explain Peltier and Thomson effects.
 - (b) Discuss the meaning and significance of Heat Death of the Universe.

Section-E

8. (a) Using Maxwell's Thermodynamic relations, prove that for Vander Waals' gas:

$$C_P - C_V = R \left[1 + \frac{2a}{RTV} \right]$$

(b) Show that the change in temperature in a Joule-Thomson Effect is given by:

$$dT = \frac{V}{C_P} [T\alpha - 1] dP$$

- 4,5
- 9. (a) Prove that adiabatic stretching of a wire leads to cooling effect.
 - (b) Using thermodynamic potentials, derive the Maxwell's four relations.

 5,4