Roll No.

Total N_0 . of Questions: 9] (2034)

[Total No. of Printed Pages: 8

UG (CBCS) Ist Year Annual Examination

2705

B.Sc. CHEMISTRY

(Atomic Structure, Bonding, General Organic Chemistry and Aliphatic Hydrocarbons)

(Core)

Paper: CHEM 101

Time: 3 Hours]

[Maximum Marks: 50

Note: Attempt five questions in all. Select one question from each Section. Q. No. 9 of Section E is compulsory.

Section-A

- 1. (a) Draw the radial probability distribution curves for 3s and 3d orbitals.
 - (b) State and explain Pauli's exclusion principle.
 - (c) What are the limitations of Bohr atomic model?
 - (d) What are the factors responsible for stability of half filled and completely filled orbitals? 3, 2, 2, 3

CH-5 (1)

Turn Over

- 2. (a) Calculate the Screening constant S and effective nuclear charge (Z_{eff}) for an electron present in 3p-orbital of Phosphorus atom (Z = 15).
 - (b) Why is the shape of d_{z^2} is different from $d_{x^2-v^2}$?
 - (c) Why 4s orbital is lower in energy than 3d orbital?
 - (d) Differentiate between orbit and orbital. 3, 3, 2, 2

Section-B

- 3. (a) Discuss Born-Haber's cycle for finding the lattice energy of NaCl.
 - (b) Cu⁺ and Na⁺ are of same size but CuCl is insoluble while NaCl is soluble in water. Explain.
 - (c) Calculate the percentage ionic character of Cs-F bond of CsF molecule. The electronegativities values of Cs and F are 0.7 and 4.0 respectively.
 - (d) Discuss the factors which influence the formation of ionic compound.

 3, 2, 2, 3

- 4. (a) Using molecular orbital theory, predict the bond order and number of unpaired electrons in O_2 , O_2^- , O_2^+ and O_2^{2+} .
 - (b) Discuss the shape and hybridization of the following molecules:

konte symbler, med knietyka basi

- (i) XeF₂
- (ii) CIF₃
- (c) Explain the bond angle trend in PF₃, PCl₃, PBr₃ and PI₃.
- (d) Differentiate between bonding and antibonding molecular orbitals. 4, 2, 2, 2

Section-C

5. (a) How will you explain the order of stability of free radicals:

$$(CH_3)_3 C' > (CH_3)_2 CH' > CH_3 CH_2 > CH_3$$

(b) Arrange the following acids in increasing order of acidic strength Cl₃CCOOH, CH₃COOH, ClCH₂COOH and Cl₂CHCOOH.

- (c) Classify the following as electrophile and nucleophile SO₃, NH₃, AlCl₃ and ROR.
- (d) What is Huckel's rule? Explain with examples.

 3, 3, 2, 2
- 6. (a) Draw the various conformations of *n*-butane and explain their relative stability.
 - (b) What are diastereoisomers? Give examples.

 Differentiate diastereoismers from enantiomers.
 - (c) Assign E and Z configuration to the following compounds:

$$H_3C$$
 C1
(i) $C=C$ COOH

$$\begin{array}{c|c}
I & Br \\
C1 & C=C \\
CH_3
\end{array}$$

(d) What are carbanions? Give the structure also.
3, 3, 2, 2

CH-5

Section-D

- (a) Give the mechanism of halogenation of methane in the presence of light.
- (b) What is Kharasch effect? Explain the mechanism for addition of HBr to propene in the presence of benzoyl peroxide. Why this effect is not shown by HCl and HI?
- (c) Write short notes on the following:
 - (i) Wurtz reaction
 - (ii) Corey House reaction

3, 3, 4

- 8. (a) Explain the following reactions
 - (i) Hydroboration oxidation
 - (ii) Ozonolysis of Alkene
 - (b) What is Birch reduction? Explain the mechanism of this reduction.
 - (c) Compare the reactivity of alkenes and alkynes towards electrophilic addition reactions. 3, 3, 4

Turn Over

Section-E

(Compulsory Question)

- 9. Multiple choice questions/True or false/Fill in the blanks: $1\times10=10$
 - (i) Which of the following d-orbital is directed towards the principle axis ?
 - (a) d_{xy}
 - (b) d_{yz}
 - (c) d_{zx}
 - (d) $d_{x}^{2} y^{2}$
 - (ii) Which of the following statements is false redarding s-orbitals?
 - (a) All s-orbitals are spherically symmetrical.
 - (b) Each orbital has *n* regions of high probability.
 - (c) There are (n-1) nodes in ns orbital.
 - (d) The effective size of s-orbital increases as n decreases.

CH-5

(iii)	The covalent character is favoured by:	⊃ývý
	(a) Small size of the anion	
	(b) Low charge of the cation	100
	(c) Large size of the anion	
	(d) The cation having 8 electrons (noble g	gas
	configuration)	
(iv)	Which of the molecule has zero dipole momer	nt?
	(a) NH ₃	
	(b) N ₂ O	
	(c) BCl ₃	
(5)	21.(d) 11. CO ₂	
(v)	c co SnCl NH2 and ROH:	
	(a) SO ₃ and NH ₃ are electrophiles	
	(b) SO ₃ and ROH are electrophiles	3 *
	(c) NH ₃ and ROH are electrophiles	3 J 1 T
	(d) SO ₃ and SnCl ₄ are electrophiles	Turn Over
:H-	-5 ((8 ⁷))	Turnover

(vi)	Enantiomers can be separated by:	
	(a) Hand-picking method	
	(b) Chemical method	
	(c) Biological method	
. Visit	(d) All of these	
(vii)	In PF ₅ molecule, two axial bonds are	
	than three equatorial bonds.	
(viii)	XeF ₂ molecule involves	
	Hybridization.	
(ix)	Terminal alkynes are acidic in nature.	
	(True/False)	
(x)	More alkylated alkenes are more stable.	
	(True/False)	
1		