Roll No.

Total No. of Questions: 9] (2034)

[Total No. of Printed Pages: 8

UG (CBCS) IInd Year Annual Examination

2801

B.Sc. CHEMISTRY

(Chemistry of Main Group Elements, Chemical Energetics and Equilibria)

(Core)

Paper: CHEM 202 TH

Time: 3 Hours]

[Maximum Marks: 50

Note: Attempt five questions in all, selecting one question from each Section. Section E is compulsory. Candidates are required to answer accurate and precise.

Section-A

- 1. (a) Discuss the unique position of hydrogen in periodic table.
 - (b) What are metallic or interstitial hydrides? How do they differ from molecular hydrides?
 - (c) What is heavy water? Give its important uses. 4,3,3

CH-101

(1)

Turn Over

- 2. (a) Why is LiF insoluble in water whereas other alkali metal fluorides are soluble?
 - (b) NaOH is stronger base than that of Ba(OH)₂.

 Explain.
 - (c) Discuss the factors on which ionization enthalpy depends.
 - (d) Why alkali metals are stronger reducing agents?
 - (e) Why salts of alkaline earth metals are colourless and diamagnetic? Explain. 2×5=10

Section-B

- 3. (a) Explain and arrange the following in increasing order of their bond angle:
 - NH₃ PH₃ AsH₃ SbH₃ BiH₃
 - (b) Discuss the geometry of ICl_2^- .
 - (c) BF₃ can act as Lewis acid but CCl₄ cannot do so. Why?

- (d) Explain the following:
 - (i) PCl₅ is known but NCl₅ is not known
 - (ii) H₃PO₄ is triprotic in nature whereas H₃PO₃ is diprotic in nature. 3,2,2,3
- 4. (a) There is very little possibility of the formation of compounds of helium. Explain.
 - What are clatharate compounds of noble gases? What are the conditions for clatharate formation?
 - Discuss the structure of XeF₄. How does it react with water?
 - (d) Complete the following reactions:
 - (i) $Xe + PtF_6 \longrightarrow ?$
 - (ii) $XeF_2 + 2SO_3 \longrightarrow ?$
 - (iii) $XeF_4 + H_2O \longrightarrow ?$ 2,2,3,3

Section-C

5. (a) What are extensive and intensive properties? When does an extensive property become intensive property?

CH-101

- (b) Derive an expression for ΔU and ΔH for adiabatic reversible expansion of an ideal gas.
- (c) Differentiate between state function and path functions. Explain with suitable examples.
- (d) Enthalpies of the formation of $CO_2(g)$, CO(g) and $H_2O(l)$ are -393.5, -111.3 and -241.8 kJ/mole respectively. Calculate the ΔH^0 for the reaction :

$$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(1)$$
 3,3,2,2

6. (a) State and explain Nernst heat theorem and prove that:

$$\lim_{T\to 0} (\Delta S) = \lim_{T\to 0} (\Delta C_p) = 0$$

(b) Calculate the enthalpy change in the reaction : $4NH_3(g) + 3O_2(g) \longrightarrow 2N_2(g)$

1-1213 1 10 3

$$+6H2O(1)$$

at 298 K, given that the enthalpy of formation at 298 K for $NH_3(g)$ and $H_2O(l)$ are -46.0 and -286.0 kJ/mole respectively.

CH-101

(c) Discuss the concept of residual entropy. How does it originate and how is it calculated? 3,4,3

Section-D

- 7. (a) Define the law of chemical equilibrium. How it can be derived thermodynamically?
 - (b) Calculate the standard free energy change of the reaction and predict its feasibility:

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g)$$

+ $6H_2O(l)$

Given that the standard free energies of formation of NH₃(g) and NO(g) and H₂O(l) are 16.74, 86.61 and 237.32 kJ/mole respectively.

(c) State and explain Le-Chatelier's principle by applying it to the formation of ammonia by Haber's process.

4,

4,3,3

- 8. (a) How does solubility product differ from ionic product? Explain solubility product principle.
 - (b) 0.049g of H_2SO_4 is dissolved per liter of the given solution. Calculate the pH of solution.
 - (c) Discuss the effect of temperature on ionic product of water.
 - (d) What is a Buffer Solution? Give an example of an acidic Buffer mixture and explain its Buffer action.

 3,2,2,3

Section-E

(Compulsory Question)

- 9. Do as directed. Fill in the blanks/MCQ/True-False:
 - (i) Ortho and para hydrogen differ in :
 - (a) Atomic number
 - (b) Mass number
 - (c) Electron spin in two atoms
 - (d) Nuclear spin in two atoms

CH-101

- (ii) Water has maximum density at :
 - (a) 0°C

(b) 273°C

(c) 4°C

- (d) -10° C
- (iii) Which one is more reactive: K or Ca?
- (iv) HClO₄ is acidic than that of HClO₃.
- (v) What is inorganic benzene?
- (vi) XeO₃ molecule has pyramidal structure.

(True/False)

(vii) An aqueous solution of CuCl₂ is basic.

(True/False)

(viii) For cyclic system:

(a) q = 0

(b) q = -w

(c) $\Delta U > 0$

(d) $\Delta U < 0$

CH-101

(7)

Turn Over

(ix)	In complete Carnot cycle, the change in entropy				
	of th	e univers	se is:		
	(a)	Positive		(b)	Negative
	(c)	Zero		(d)	Infinite.
(x)) pH of water is 7 at 25°C. If water is heated at 80°C,				
	then:				
	(a)	pH will	increase		
	(b)				
	(c)				
	(d)	(d) H ⁺ ion conc. increases but OH ⁻ ion conc.			
		decreas	ses		1×10=1